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Heteroclinic networks
In a dynamical system, a heteroclinic cycle is an invariant set of
equilibria and connecting heteroclinic orbits. A heteroclinic net-
work is a connected union of heteroclinic cycles. Two of the three
possible heteroclinic networks in R4 are represented below.
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The ∆-clique Network The Kirk-Silber Network [2]

Splitting node

When analysing heteroclinic networks, we are often interested in
questions such as:

i) When are the network and its component cycles stable, and
how much so?

ii) How do trajectories evolve near the network? Can there be
switching between cycles, how often, and in which direction?
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The black dots above represent an invariant set, such as a hete-
roclinic network or cycle, and we shade the basin of attraction
green. Essential and fragmentary asymptotic stability (e.a.s. and
f.a.s., respectively) are two ways a heteroclinic cycle can be at-
tracting, but not asymptotically stable.
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To analyse heteroclinic networks, we produce returnmaps approx-
imating the flow near the network by linearising the flow near
equilibria and along heteroclinic orbits. Stability properties can
be derived from these maps using stability indices [4].

Analysing the ∆-clique network
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Construct a Poincaré section
at the splitting node.

Construct a return
map on the section.

Take logarithms and project
onto a unit simplex, S.

Construct a continuous, piecewise-smooth projected map f on S
induced by the action of the return map in log coordinates.

Switching manifold at ϑ = ϑs
S

Stability and switching in the ∆-clique network
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(i)

CA is f.a.s. and CB is c.u. Trajectories switch
from CB to CA.

ϑ−
A and ϑ+

B cross the
switching manifold
simultaneously in
opposite directions.

(ii)

CA and CB are both f.a.s. Some trajectories
switch from CA to CB .

ϑ+
A and ϑ−

A are destroyed
in an admissible saddle-

node bifurcation.

(iii)

CB is f.a.s. and CA c.u. Trajectories switch from
CA to CB.

ϑ+
A and ϑ−

A are created
in a virtual saddle-
node bifurcation.

(iv)

CB is f.a.s. and CA c.u. Trajectories switch from
CA to CB .

ϑ+
A and ϑ+

B cross the
switching manifold

simultaneously in
the same direction.

(v)

CA is f.a.s. and CB c.u. Trajectories switch from
CB to CA.

• CA - ξ1 → ξ2 → ξ3 → ξ4 → ξ1 . . .

• CB - ξ1 → ξ2 → ξ3 → ξ1 . . .

•ϑ±
A - fixed points of fA; ϑ+

A corresponds to CA
•ϑ±

B - fixed points of fB; ϑ+
B corresponds to CB

• c.u. - completely unstable
• f.a.s. - fragmentarily asymptotically stable
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The CA cycle. The CB cycle.

Bifurcation Diagrams
The map f : S → S is a piecewise map of two components,
fA : ΘA → S and fB : ΘB → S, where ΘA = (−1, ϑs) and
ΘB = (ϑs, 0).

If a fixed point ϑA of fA lies in ΘA, it is admissible. If it
lies in ΘB it is virtual. The point ϑA = ϑs is known as a border-
collision bifurcation [1]. (And likewise for fB.)

Below we show two bifurcation diagrams of the fixed
points of f against c13 for fixed values of c14 (the eigenvalues
at ξ1 in the x3 and x4 directions). In both diagrams, stable fixed
points are solid lines and unstable fixed point are dashed lines.
The diagrams are coloured amber and blue in the domain of def-
inition of fA and fB, as are the fixed points of each function.
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Bifurcation diagram for c14 = 1.25: ϑ−
A and ϑ+

B simultane-
ously cross ϑs as c13 increases and both lose admissibility.
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Bifurcation diagram for c14 = 2.75: ϑ+
A and ϑ+

B simultane-
ously cross ϑs as c13 increases and exchange admissibility.
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Future Work
• Analyse sustained switching near a heteroclinic network (such

as the Rock-Paper-Scissors-Lizard-Spock network [5] or the
two cycle network of Podvigina [3]) as periodic orbits in the
continuous, piecewise smooth projected map.
• Analyse the “strings of sausages” stability regions identified in

[5] as border-collision bifurcations of these periodic orbits.
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